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Cross-Correlat  io^ Fimct ions of Spherical Waves Propagating 

Through a Slab Cmtaining Anisotropic Irregularities 

Abstract 

In general, satellites a re  moving at such a fast velocity that the 

ioncsphere as well as the imbedded irregularities can be considered as 

frozen, The interest is then in cross-correlating signals received at 

two 31" more receivers as the satellite speeds across the sky, This report 

is a study of the cross-correlations between two spherical waves passing 

throa;gh a slab containing ani5otropic irregularities, 

The cross-correlation functions are derived as functions of the distance 

between the transmitters, A condition for maximum correlation is obtained 

and is found io correspond to the case when two rays intersect in the slab, 

thus proving the often intuitively assumed condition for maximum cross- 

correlation, This maximum correlation function p is then expressed as M 

a fLnct ion  of the distance between the  receivers, x. For large values of 

x, pM varies as 1 x,  

the height and slab thickness of the ionospheric irregularities frompatellite 

The results indicate possibilities of determining 

scintillation data, 
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I. Introduction 

This report is a study of the cross-correlation of satellite signals 

through a slab containing small anisotropic irregularities. The cross- 

correlation is defined as the correlation between signals at one receiver 

when the satellite is at one position and signals at another receiver when 

the satellite is at a new position. In spaced-receiver experiments, one 

often uses the observed correlations to determine the height, thickness and 

other parameters of the ionospheric irregularities, Intuitively, the correla- 

tion should be a maximum when the two rays intersect in the slab of irregu- 

larities. One of the purposes of this report is to prove mathematically 

that this indeed is the case, We follow closely Yeh’s derivation of auto- 

correlation functions (Yeh, 1962) t o  formulate the cross-correlation functions 

as functions of the distance d between the two satellite positions. The 

value of d which makes the cross-correlation function a maximum is denoted 

by dMe 

this d corresponds to the case when the two rays intersect in the slab, 

The maximum value of the correlation is then expressed as a function of x, 

the distance between the two receivers, and is found to agree with the 

result derived by McClure and Swenson (1964). 

From the geometry of the problem (Fig. l), it can be shown that 

M 

11. Derivation of the Cross-Correlation Functions 

Assume the slab is characterized by a refractive index: 

n e )  = <ri> [ 1  + E p ( 3 ]  (1) 

where <ri> is a constant, p(2) is a random variable of position and E is a 

small constant 
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The geometry of t h e  problem i s  shown i n  F ig .  1, The s l a b  i s  assumed 

t o  be extended t o  i n f i n i t y  i n  x and y d i r e c t i o n s .  

The o r i g i n  i s  taken a t  0, a t  the  l e v e l  where t h e  s a t e l l i t e  i s  moving. 

a, b, cg r e s p e c t i v e l y  r ep resen t  the d i s t a n c e  between t h e  s a t e l l i t e  he igh t  

and t h e  t o p  of t h e  s l a b ,  t h e  th ickness  of t h e  s l a b ,  and t h e  d i s t a n c e  between 

t h e  bottom of t h e  s l a b  t o  t h e  l e v e l  where t h e  r e c e i v e r s  are loca ted .  

A (x 9 0 , 0 )  is t h e  f i r s t  p o s i t i o n  of t h e  sa te l l i t e ,  A2(xT-dJ0,0) is t h e  o t h e r  

one, whi le  d measures t h e  d i s t ance  between t h e s e  two p o s i t i o n s .  

are a t  B (-x.'2,O,h) and B2(x,42,0,h) r e s p e c t i v e l y .  

t h e  p o s i t i o n  of an  a r b i t r a r y  s c a t t e r e r  i n  t h e  s l a b ,  

d i s t a n c e s  between t h e  s a t e l l i t e  A and r e c e i v e r  B between A and t h e  

s c a t t e r e r ,  and between B and t h e  scatterer r e s p e c t i v e l y .  If w e  assume 

harmonic t i m e  v a r i a t i o n ,  exp(iwt) ,  and a l l  l eng ths  are normalized by t h e  

1 T  

The r e c e i v e r s  

S ( X ' ~ ~ ' ~ Z ~ )  r e p r e s e n t s  

and R1 are t h e  

1 
f 

rl' 

1 1' 1 

1 

wave number k def ined  by:  

t h e n  t h e  s i g n a l  from A t o  B can be expressed as, assuming s m a l l  f l u c t u a t i o n  

per  wave length,  (Karavainikov, 1957; Yeh, 1962) 

1 1 

where 
3 -bo 

Q, = - $  -7 '(%.) s i n ( r ;  + R 1 - rl) d x 1 
lE 

2 r  v q r  R 1 1  
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H e r e  Q i s  t h e  phase depa r tu re  from o r i g i n a l  s p h e r i c a l  wave and S is t h e  
1 1 

logar i thmic  ampli tude,  The i n t e g r a t i o n s  a r e  c a r r i e d  out  i n  t h e  whole r eg ion  

of t h e  i r r e g u l a r i t i e s ,  Note t h a t  r + R - r r e p r e s e n t s  t h e  phase d i f f e r e n c e  
1 1 1 

between t h e  s c a t t e r e d  path and t h e  d i r e c t  pa th .  

S imi l a r  express ions  can be w r i t t e n  f o r  A and B The normalized c ross -  2 2 "  

c o r r e l a t i o n  func t ions  a r e  then  def ined by : 

2 

- 2 2  
<QlQ2 rlr2e J J  <p(zi)p(%y> I e 3 +' 3,' 

2 

(6) 

. ~ -  s i n ( r  +It -r )sin(r +R -r )d x d x - 
1 1 1  2 2 2  1 W I  

R R  r l  r2 1 2 " <Q% < Q 5 4 ~  v p v q  

U 3 -PV 3 -c 
- cos( .  +R -r )cos(r  cR - r  1 1 1  x d x 2 1 1 1  2 2 2  1 P P  

(7) 

where <Q% and < S 3  are au to -co r re l a t ion  func t ions  f o r  phase and amplitude 

r e s p e c t i v e l y  (Yeh, 1962) 

W e  s h a l l  d e r i v e  t h e  c o r r e l a t i o n  f u n c t i o n s  a s  func t ions  of d ,  W e  see 

from F igs .  2a,  2b t h a t  d and d a re  t h e  d i s t a n c e s  f o r  t h e  two extreme 

cases i n  which t h e  r a y s  i n t e r s e c t  a t  t h e  t o p  and t h e  bottom of t h e  s l a b  

r e s p e c t i v e l y ,  

t h e  s l a b ,  From F ig ,  2,  w e  have:  

1 2 

For any d such t h a t  d < d < d2, t h e  r a y s  w i l l  i n t e r s e c t  i n  
1 -  - 

t' ax/(h-a) ( 8  1 dl 

W e  s h a l l  prove t h a t  t h e  c o r r e l a t i o n  i s  maximum f o r  va lues  of d i n  such a 

range .  Making the  usua l  assumption t h a t  t h e  c h a r a c t e r i s t i c  s c a l e s  of t h e  

i r r e g u l a r i t i e s  a r e  much l a r g e r  than a wavelength? (Chernov, 1961; Karavainikov, 
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1957; Tatarski, 1961) we can approximate the distances in the integrals 

(6) and (7) as follows, When appearing in the phase factor, 

r v  + R - r - 1  = p { y2 p2 + [ (x i -xTld)  - z’bx/12-xT+d),’hj 
2 2 2 2 

232 

and when appearing in the denominator, 

r q  = z ’ ,  R = h - z’, r = h  

Let us define 

and the normalized correlation function of the medium by 

We have then, from equations (61, (79, and ( lo ) ,  to (15), 

I2 8 q 2  
y2 + [ (x2 - x +d) - (x/~-x +d) Z2/h] T T - I 
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e 6 

'2 I 12 

y2 t [ (x2 - x +d) - ( ~ / 2  - xT +d)z2/h] T + 

Following the usual procedure of changing to relative and center of mass 

coordinates : 

9 1 1 9 1 I 8 1 t 

(19) 
relative 

= x 2 - x  1' 1 coordinates 
y = y 2 - y l ,  z = z 2 - z  

1 '  ' 1 '  I l 1 '  I center of 
a = -(x 2 1  + x2),, p = ~ ( y i  + y2), y = - ( z  2 1  + '2) mass coordinates 

We can carry out the a t ,  and (3' integration in (16) and (17): 

Now, we shall introduce an auto-correlation function f o r  the medium of the 

form : 

Note that in general 1 f l y  f lz, and irregularities are anisotropic. 
X 

Substituting (23) into (21) and (22), we can integrate with respect 

to x i  and y t 9  and obtain: 
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2 [ (x+d)y '/h- (xT-d/2)z'/h-d] -cy 
Q2 
2 

l2 + i2zq(2y'/h-1) 

d[ 22 ' (2y '/h- 1)/1 '-i ] [ 22 (2y /h- l)/I 2-i 3 

a+b b 
I3 = Im ?T Jdy' $dz' X 

I 

a z=-b Y X 

2 [ (x+d)y '/h- (X -d/2)~ '/h-d] 
e..(- 2 2 T 2 - $1 

Z 
I lx[i Dx-iz' /h Ix + 13 a+b b 

I4 = Im 7c $dyt Sdz' 
a -b i(DY-z"/hl2 - i)(Dx - z' 2 2  /h - i) Y X 

(26) 
2 D = 4y1(h-y')/hl 2 where D = 4y' (h-y')/hI 

X x ,  Y Y 

are the equivalent wave numbers. Im represents the imaginary part. For 

z' integration, we note that since b>> 1 

mainly comes from z '  < 1 the limit can then be taken as -m to + 00. Also 

the contribution of the integral 
Z' 

- z' 
2 since 1 >> 1, terms like 2z'(2y/h-1)/L2 zt2/hl in the integrand can be Y' Z 

neglected compared to unity. With these simplifications, we have 

where 
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Assume t h e  s l a b  is t h i n  a s  compared t o  t h e  d i s t a n c e  between s a t e l l i t e  and 

t h e  t o p  of t h e  s l a b .  I n  t h e  s l a b ,  t h e  va lues  of D ' s  w i l l  not change much. 

W e  can r ep resen t  them by some average va lues  6 ' s .  

can be in t eg ra t ed ,  t r e a t i n g  D and p a s  cons t an t ,  w e  o b t a i n  f i n a l l y :  

Then, equat ion  (29) 

pa - 6d91 
i x z  x+d X+d x +d [erf(-  pa - Bd + ~ pb) - e r f  (- 

l l h  2 
I4 = I m  - 7l 

1/2 x+d h h h ( l + i D  ) 
Y 

(31) 

The c r o s s - c o r r e l a t i o n  func t ions  can be then w r i t t e n  as, from (14) and (15): 

(33 9 

where I and I are g iven  by (27') and (31) r e s p e c t i v e l y .  For very t h i n  

s l a b ,  f u r t h e r  approximations can be made i n  t h e  express ions  f o r  I 

W e  cons ider  t h e  fo l lowing  two cases ,  us ing  Yeh's (1962) r e s u l t s  f o r  < S 3  

and <e%. 

3 4 

and 14. 3 

(1) D >> 1, Fraunhober region, f o r  xb,'hP < 1? 
X 

2 2 
* 2 2 2 2  -a [ax,'h - (1-a/h)d] p (d) = pS(d) = (,m [ 1-a ab(x+d) /h +a b(x+d)d/h]Oe Q X 

(34) 

(2 )  D ' s  << 1, Fresne l  region,  f o r  xb/hl < 1, 
X 
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2 2 
(35 

- 2 2 -a [ a x  'h- Cl-a/h)d] p (d) = a1 [ l -a  ab (x td )2 /h2  i- a b(x+d)d/h]Oe Q X 

2 
where Q = (x+U)byhl 

X 

- - 
I n  t h e  case  of i s o t r o p i c  i r r e g u l a r i t i e s ,  I = 1 = 1, D = D is  reduced 

t o :  

X Y x y ps 

111. Maximum C o r r e l a t i o n s  

I f  we d i f f e r e n t i a t e  equat ions (34) and (35) with  r e s p e c t  t o  d and set 

t h e  r e s u l t  equa l  t o  zero,  we have t h e  equat ion  for d 

t h e  maximum (or minimum) va lues  of c o r r e l a t i o n  f u n c t i o n s .  Af te r  some 

corresponding t o  
M' 

a l g e b r a i c  manipulat ions,  t h e  

+ a b 2 x 2  ax 1-2a/h bx 
( 1- 2 ) K - +  1-a/h 2h 

h 

equat ion becomes: 

2 2 
ax a bx 2a abx b a aba  x 1 +-(- - 

h h 
11 + 2 2 n h  d [- -(i- T;) (1- Mh 

0 n 
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Here we have assumed that a is independent of d o  From (28) we can see that 

this is a fairly reasonable approximation, In most cases 

To solve equation (39),, we notice that as o result of our assumption of 

thin slab, terms containing (b'n) are small compared to unity, We can 

use perturbation method tc solve for d as a series expansion of (b/h). 

Neglecting all (b'h) terms, we get first: 

M 

(40) ax,'h - d (1-a ' f i9  = 0 MO 

= dl (41) I - ax &-a] dMO Theref ore 

where d is given by equation (89, Next let d I dMO + 1, substitute 

this into equation (399, solve for 1 to the order of (blh), we have : 

1 M 

Theref ore 

bx 1 
0 -  

1 
h-(a+b9 2 (1-a.ih) x =  

ax bx 1 * - -  - I_ 

dM - h-a 2c Ql-a/h) 

i ax acb 
2 h a  c 

= '- I_- +---XI 

1 .  
2 = - lap + d2) (43) 

Corresponding to this d the point of intersection f o r  the two rays is 

(from Fig, 2) 

MJ 

b;b+c) - z = a+------ I a+b#'2 M b + 2c 

which is the center of the slab, 



11 

I t  can be shown t h a t  t h i s  d does indeed correspond t o  t h e  maximum M 
2 

va lue  of c o r r e l a t i o n  func t ions  by c a l c u l a t i n g  (a p/a2d) a t  d M o  Therefore,  

w e  have obta ined  t h e  r e s u l t  t h a t  the c r o s s - c o r r e l a t i o n  is maximum when t h e  

two r a y s  i n t e r s e c t  a t  t h e  c e n t e r  of t h e  s l a b ,  This  m a x i m u m  va lue  of t h e  

c o r r e l a t i o n  f u n c t i o n  i s :  

W e  n o t i c e  t h a t  f o r  x = 0, pM = 1, a s  i t  should be,  For l a r g e  va lues  of x, 

i s  p ropor t iona l  t o  l j x ,  s i n c e  t h e  d i f f e r e n c e  between t h e  two e r r o r  func t ions  PM 
approaches a cons tan t  2 approximately. 

The above d i scuss ion  is for both p and p i n  t h e  case D>> 1 and a l s o  8 S 

when D << 1, To f i n d  t h e  maximum of the  ampli tude c o r r e l a t i o n  f u n c t i o n  
for 'Q 
ps i n  t h e  case when D << 1, w e  d i f f e r e n t i a t e  equat ion  (38) w i t h  r e s p e c t  t o  

d, and set t h e  r e s u l t  equa l  t o  zerog w e  o b t a i n :  

where 6 is  given i n  equat ion  9371, 

Again, i f  w e  f i r s t  neglec t  terms i n  (bBh),? w e  have one roo t  of t h e  

equat ion ,  6 = 0, which corresponds t o :  

Now i f  w e  le t  

d = d o + A D g  

ax  dMo = - - 
h-a - dl 
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Substituting them into equation (451, solve for X q  to 

(b/h), we have : 

L bx 1 
2 'h-(a+b) (1-aih) 

A '  = - 

the first order of 

(48) 

Exactly the same as equation (42) .  Therefore, for the case D 6< 1,7 the 

maximum of the amplitude cross-correlation function p also occurs when 

the two rays intersect at the middle of the slab. 

S 

IV. Results and Graphs 

The cross-correlation functions are plotted in Figs, 3-6 against d, 

for several values of x, The maximum value of the correlation function 

is also plotted as a function of x, We have used the following general 

satellite experiments data: (McClure, Swenson- 1964) 

h = l O O O k m  a = 6 5 0 k m  c=.3OOkm b - 5 0 k m  .t = l k m .  

V Conclusion 

We have derived the cross-correlation functions for spherical waves 

propagating through a slab with anisotropic irregularities as functions of 

distance between the two source points. We have proved, for a thin slab, 

that the correlation is a maximum when the two rays cross at the middle 

of the slab. This fact can be of some practical use, FOP example, we can 

determine the height and slab thickness of the ionospheric irregularities 

from satellite scintillation data (McClure and Swenson, 1964). 
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